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SUMMARY

Subsurface Green’s functions provide crucial information for

the seismic imaging and redatuming. A complete Green’s

functions containing the primary reflections and all orders of

multiples can be utilized to mitigate artifacts and improve

the resolution of seismic imaging. To fulfill this goal, some

data-driven approaches using one-sided recorded data from

the Earth’s surface and a smooth migration velocity of the

reference medium were developed. Among these approaches

an iterative scheme was proposed using the multidimensional

Marchenko equation based focusing functions. The iterative

Marchenko approach is intrinsically designed to retrieve the

coda of the focusing functions, which is supposed to handle

all the internal multiples. The estimated focusing functions are

then utilized to calculate the Green’s functions by a crosscorre-

lation step. Inspired by the generalized internal multiple imag-

ing (GIMI), we propose an approach that directly retrieves the

Green’s functions, instead of solving for the focusing func-

tions. In the GIMI process, the reflection data are projected

into the subsurface using the transmission information, fol-

lowed by an interferometric step, which is similar to the mul-

tidimensional crosscorrelation of the Marchenko implementa-

tion. Thus, we derive a projected Marchenko equation from

the relation between the Green’s functions and the focusing

functions, which reveals a clear connection to the GIMI. The

new formulation offers an opportunity to solve for the Green’s

functions using an iterative scheme or by dealing with differ-

ent orders of scattering, separately (a hierarchic approach). We

introduce these two schemes and the corresponding adjoint op-

erations, which enable us to adopt an optimization for data fit-

ting. The basic performance of the two schemes are demon-

strated on synthetic examples for the purpose of redatuming.

INTRODUCTION

Seismic imaging of the Earth’s subsurface medium relies on

Green’s functions between the observation survey and the imag-

ing points. The Green’s functions of primary reflectivities can

be easily retrieved from the recorded data using the provided

migration velocity, which are commonly used in conventional

imaging methods based on the single scattering assumption.

The higher-order scattering that are embedded in the data as in-

ternal multiples end up showing as artifacts in the image, thus

are often treated as noise (Berkhout and Verschuur, 1994). The

internal multiples are generally with lower energy than the pri-

mary reflections, however, they play an important role in im-

proving our ability to image complex structures, by providing

additional illumination (Malcolm et al., 2009; Staal and Ver-

schuur, 2013; Zuberi and Alkhalifah, 2014). An accurate esti-

mation of the full Green’s function produces a high-resolution

image with less artifacts (Wapenaar et al., 2017), moreover,

it provides the essential information to retrieve the subsurface

localized wavefields that can be very useful for target-oriented

inversion (Curtis and Halliday, 2010; Vasconcelos et al., 2017;

Alkhalifah and Guo, 2018). Iterative substitution of the cou-

pled Marchenko equations has been implemented to retrieve

the Greens functions from a single-side acquisition surface to

an arbitrary subsurface point (Behura et al., 2012; Wapenaar

et al., 2014; van der Neut et al., 2015b). Focusing functions

and causality-basedwindows are defined to solve the Marchenko

equations. The preprocessed reflection response is substituted

into the multidimensional crosscorrelation iteratively to solve

for the focusing functions, which are then used to calculate the

Green’s functions. A direct approach to recognize the inter-

nal multiples is offered by the three-step GIMI process (Zu-

beri and Alkhalifah, 2014). It originally proposed to improve

the imaging of complex subsurface structures that can be bet-

ter illuminated by higher-order scattering. The second step

of the GIMI process, which is an interferometric crosscorre-

lation with the reflection data, can be repeated to transform

even higher orders of scattering into the leading order term for

imaging. Alkhalifah and Guo (2018) showed that GIMI can be

utilized to image different orders of multiples and they formu-

lated a least-squares optimization to fit the multiple images to

the corresponding data.

The GIMI approach can be applied to subsurface wavefield

estimation through a separate optimization for different or-

ders of multiple; besides that, it has similar operations to the

Marchenko iterative solver as they both rely on concatenated

multidimensional crosscorrelation. To find the relation be-

tween these two systems, we derive an approximate solution

to retrieve the Green’s functions directly from the Marchenko

equation, which can be regarded as a projected version. This

new equation, though not an exact inverse, shares the same

form of implementation as GIMI, which simplifies the compar-

ison. It weakens the role of the causality-based windows that

is designed to estimate the intricate focusing functions in the

Marchenko iterative approach. In this abstract, we propose two

schemes to estimate the subsurface Green’s functions based

on the derived equation. Similar to the Marchenko approach,

we can deploy an iterative scheme to retrieve the upgoing and

downgoing Green’s functions. Otherwise, benefitting from the

knowledge we gained from GIMI, we can estimate the Green’s

functions related to different order scattering separately, we re-

fer to as a hierarchic solution. The adjoint operation can then

be formulated for the optimization of both schemes, which will

help in producing cleaner virtual Green’s functions. We also

introduce a two-sided redatuming operation to retrieve the sub-

surface scattering wavefield based on the two schemes. More

detailed results of the proposed least-squares optimization and

the redatuming operations will be shared in the presentation of

the work at the meeting.
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A PROJECTED MARCHENKO EQUATION

We begin with the relation between the subsurface Green’s

functions and the focusing functions that is derived from the

reciprocity theorem (Wapenaar et al., 2004):

[

−G−

G+∗

]

=

[

I −R

−R∗ I

][

f−1
f+1

]

, (1)

where the Green’s functions G are related to the focusing func-

tions f through a matrix composed of the reflection data R. The

superscript − and + indicate upgoing and downgoing wave-

fields, respectively. Instead of applying a causality-based win-

dow to solve the focusing functions, we aim to directly esti-

mate the Green’s function by multiplying a matrix

A =

[

I R

R∗ I

]

(2)

to both sides of the equation, which gives

[

I R

R∗ I

][

−G−

G+∗

]

=

[

I−RR∗ 0

0 I−R∗R

][

f−

f+

]

. (3)

We move the matrix
[

I−RR∗ 0

0 I−R∗R

]

to the other side of equation 3 and multiply a windowing ma-

trix of function Ψ, we get

[

Ψ 0

0 Ψ

][

I−RR∗ 0

0 I−R∗R

]

−1

A

[

−G−

G+∗

]

=

[

Ψ 0

0 Ψ

][

f−

f+

]

.

(4)

The window function Ψ is designed to preserve the first ar-

rival and the events after, thus gives Ψf− = 0 and Ψf+ = f+1,0,

in which f+1,0 represents the transmission component (van der

Neut et al., 2015b). Based on the observation that the inverse

matrix is diagonally dominant, we approximate it with an iden-

tity matrix, then we can rewrite equation 4 as

[

Ψ 0

0 Ψ

][

I R

R∗ I

][

−G−

G+∗

]

=

[

0

f+1,0

]

, (5)

where f+1,0 can be computed using the migration velocity. We

notice that equation 5 offers a direct estimation of the Green’s

functions without retrieving the focusing functions; meanwhile

it does not require from us to deal with various combinations

of window functions. The equation can be solved by calcu-

lating the least-squares inverse of the matrix A, otherwise the

Green’s functions can be inverted using an iterative solver. A

synthetic model with layered density (shown in Figure 1a) is

used to analyze the performance of this projected equation.

The inverted upgoing and downgoing Green’s functions are

shown in Figure 2a, the summation of which provides a rea-

sonably good match to the Green’s function calculated using

the true medium. For comparison, we show the inverted results

using preconditioned Marchenko equation (van der Neut et al.,

2015a) in Figure 2c. Figures 2b and 2d show the comparison

for a trace, which indicates that the projected equation achieves

reasonably accuracy, except with some small amplitude error

compared to the inversion-based Marchenko solution.
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Figure 1: The layered density model (a) with the acquisition

geometry, (b) a smoothed version of the model and the datum

point to evaluate the Green’s function retrieval.

ITERATIVE AND HIERARCHIC SOLUTIONS

Though by solving the inverse of A we can obtain an approx-

imate full Green’s function estimation, in practive we rarely

get the ideal data survey we need and the perfectly processed

reflection response. On the other hand, we can take advantage

of the iterative scheme to find an alternate optimization for the

Green’s function, which can be connected to the subsurface

wavefield description based on GIMI. To retrieve the Green’s

functions by an iterative approach, we write equation 5 as

[

Ψ 0

0 Ψ

][

−G−+RG+∗

−R∗G−+G+∗

]

=

[

0

f+1,0

]

. (6)

The window function Ψ becomes trivial in the projected equa-

tion, as it simply preserves all the physical events. We thus

mute Ψ in the following equations to abbreviate the expres-

sion. We have
{

G− = RG+∗

G+∗ = R∗G−+ f+1,0

. (7)

Initializing the downgoing Green’s function by f+1,0, we obtain

for the first iteration
{

G+∗

0 = f+1,0

G−

0 = RG+∗

0 = Rf+1,0

, (8)

which represents the first arrivals and primary reflections at

the datum point, then we obtain the equations for the next two

iterations as

{

G+∗

1 = f+1,0+R∗G−

0 = f+1,0+R∗Rf+1,0

G−

1 = RG+∗

1 = Rf+1,0+RR∗Rf+1,0

,

{

G+∗

2 = f+1,0+R∗Rf+1,0 +R∗RR∗Rf+1,0

G−

2 = Rf+1,0+RR∗Rf+1,0 +RR∗RR∗Rf+1,0

,

(9)

and so on. These multidimensional crosscorrelation terms in

the iterative solver correspond to the concatenated interferom-

etry correlation of GIMI. Zuberi and Alkhalifah (2014) has

proved, using the Born series, that repeating the multidimen-

sional crosscorrelation to the reflection responseactually trans-

forms the energy of higher-order internal multiples to become

the leading scattering term. Finally, the GIMI approach can

image any order scattering, separately. Now, we have the it-

erative solver of equation 5, as well as the hierarchic solution

to retrieve the Green’s functions related to different orders of

multiples
{

Gm+∗

k
= (R∗R)k

f+1,0

Gm−

k
= RGm+∗

k
= R(R∗R)k

f+1,0

, (10)
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Figure 2: The Green’s functions retrieved by (a) the new projected equation and (c) the preconditioned inversion-based Marchenko;

(b) and (d) are the comparison between the full Green’s function and the estimated ones corresponding to (a) and (c). The full

Green’s function is shown in blue solid and the estimated is in red dash.

where the superscript m indicates the hierarchic solution. We

apply the iterative and hierarchic solvers to the Marmousi model

with variable density, shown in Figure 3. The recording is as-

sumed on the surface, denoted by black stars (shots and re-

ceivers share the same geometry to satisfy the reciprocity re-

quirement); the datum survey is in at depth 2.5 km. Figures 4a

and 4b show the smoothed velocity used for the Green’s func-

tion estimation and the window function Ψ computed from it.

The upgoing and downgoing Green’s functions calculated by

the iterative approach at the first iteration are shown in Fig-

ure 5; the results of the second iteration are shown in Figure 6,

followed by a summation, which we can then compare with

the full Green’s function in Figure 5. There are differences

and some artifacts in the retrieved full Green’s function, which

we hope to mitigate in an optimization formulation.

Figure 3: Marmousi velocity model with the acquisition ge-

ometry.

(a) (b)

Figure 4: The smoothed model (a) used to calculate (b) the

window function Ψ.

THE ADJOINT OPERATIONS

Alkhalifah and Guo (2018) introduced the adjoint GIMI oper-

ation, based on the interferometric step, to generate the mul-

Figure 5: The full Green’s function and the upgoing and down-

going Green’s functions calculated by the iterative approach at

the first iteration.

Figure 6: The upgoing and downgoing Green’s functions cal-

culated by the iterative approach at the second iteration and

their summation, which is supposed to match the full Green’s

function.

tiples from the corresponding high-order scattering images.

Therefore, an optimization using a least-squares data fitting is

developed to produce the separated images with higher reso-

lution and less artifacts. The adjoint operation of the iterative

solution used to fit the data is given by

Rk = G+
k

G−

k
, (11)

which can be expanded in terms corresponding to different or-

ders of scattering, e.g.

R2 = G+
2 G−

2 = f+∗

1,0Rf+1,0

+ f+∗

1,0R∗RRf+1,0+ f+∗

1,0RR∗Rf+1,0+ f+∗

1,0R∗RRR∗Rf+1,0,

(12)
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Figure 7: The downgoing Green’s function calculated by the

iterative approach, and the ones related to second- and third-

order multiples by the hierarchic approach.

where f+∗

1,0Rf+1,0 reproduces the energy for single scattering, af-

ter that the secondary leading term f+∗

1,0R∗RRf+1,0 corresponds

to the interaction between the single scattering and the source

of first-order multiple, which consists of double scattering, and

then the last term induces higher-order scattering. Therefore,

we have the adjoint operation that transform different orders of

the subsurface Green’s functions to the corresponding multiple

reflection in the data:

Rm
k = G+

0 Gm−

k
, (13)

which is consistent with the finding of Alkhalifah and Guo

(2018). The adjoint operationcan be used to eliminate the

crosstalk artifacts by deploying an least-squares optimization.

Figure 7 shows the retrieved downgoing Green’s functions con-

taining the separated multiple scattering. Using the adjoint op-

erations for the iterative scheme and the hierarchic solution, we

reproduce the data representing the full scattering from below

the datum and the one related to the second-order scattering,

which are shown in Figure 8. The window function Ψ attenu-

ates all the unphysical events from the overburden scattering.

Figure 8: The observed reflection data, the modeled data us-

ing the adjoint for iterative full Green’s function retrieval (af-

ter second iteration) and the adjoint for hierarchic approach of

second-order scattering.

GENERALIZED REDATUMING USING INTERNAL MUL-

TIPLES

Once we obtain the Green’s function at the datum level, we can

retrieve the scattering wavefield D of the underlying medium

using (Vasconcelos et al., 2010)

Dk(x,h) = G+∗

k
(x)G−

k
(x+h), (14)

where x is the location vector of the virtual source and h is

the subsurface offset (Hou and Symes, 2015). Similar to the

GIMI process, we can also retrieve the virtual data from the

separated multiples through

Dm
k (x,h) = G+∗

0 (x)Gm−

k
(x+h). (15)

Accordingly, we formulate the adjoint operation for datuming

using the iterative solution of the Green’s functions as

Rk = G−

k
(x)D∗

k(x,h)G
+∗

k
(x+h)R

or G+
k
(x)Dk(x,h)G

−∗

k
(x+h)R,

(16)

and for the datuming using the Green’s functions of separated

multiples as

Rm
k = Gm−

k
(x)Dm∗

k (x,h)G+∗

0 (x+h)R

or G+
0 (x)D

m
k
(x,h)Gm−∗

k
(x+h)R.

(17)

The virtual dataset at the datum calculated from the retrieved

Green’s functions after the second iteration is shown in Fig-

ure 9a, which show a reasonably good match with the data

modeled from the true underlying medium.

(a)

(b)

Figure 9: The retrieved subsurface scattering wavefield (a) and

the modeled data at the datum (b) using the true underlying

model.

DISCUSSIONS AND CONCLUSIONS

We first derived a projected Marchenko equation that can solve

for subsurface Green’s functions without calculating the fo-

cusing functions, and thus, reveals a clear connection to the

GIMI approach. Both the Marchenko focusing equation and

the projected equation can estimate the Green’s functions by

solving the inverse of the corresponding matrix. Inspired by

the GIMI approach, we used the projected equation to devise

iterative and hierarchic schemes of solutions. The adjoint op-

erations for both schemes can then be formulated to fulfill a

least-square data fitting optimization scheme. This optimiza-

tion produced reasonable redatuming in the Marmousi model

using a background smooth model.
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