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SUMMARY

Full-waveform inversion (FWI) is a highly non-linear opti-

mization problem which aims at retrieving high-resolution

models of the subsurface parameters. Elastic FWI (EFWI)

should provide a better representation to the elastic nature of

the subsurface than the simple acoustic assumption. However,

including elastic parameters in the EFWI requires higher the

computational cost and storage memory not to mention the

added complexity of dealing with multi parameters and higher

nonlinearity in the inversion. To mitigate these problems, we

propose an efficient wavefield inversion (EWI) for elastic me-

dia. By inverting for a background model wavefield that par-

tially fits the data and the wave equation for a modified source,

we are able to extend the search space at a reduced cost. It also

saves the storage memory by avoiding storing the background

wavefields. We formulate the P- and S-wave velocity pertur-

bations into a linear inversion system to reduce the tradeoff in

the multi-parameter waveform inversion. Applications on syn-

thetic data generated from a modified Overthrust model and a

modified Marmousi model show the effectiveness of the pro-

posed method.

INTRODUCTION

Full-waveform inversion (FWI) was initially suggested to mainly

handle media (Tarantola, 1984). After decades of develop-

ments and considering our limitations on acquisition and com-

putational resources, the acoustic assumption has dominated

the FWI seen (Virieux and Operto, 2009). In addition, the

conventional objective function based on the l2 norm least-

squares measurement is not convex. As a result, FWI suffers

from the cycle-skipping problem when reasonable initial mod-

els are unavailable and low-frequency components of the data

are missing. To make FWI more practical and effective, new

optimization problems were developed to mitigate the cycle-

skipping (Leeuwen and Herrmann, 2013, 2015). Unlike con-

ventional FWI in which we simulate the predicted data which

strictly follows the wave equation, wavefield reconstruction in-

version (WRI) relaxes the wave equation accuracy and uses it

as a regularization term in inverting for the wavefield. WRI

uses the wavefield to update the velocity in each iteration, and

thus, it requires many relatively expensive iterations. A new

formulation referred to as efficient wavefield inversion (EWI)

improves the computational efficiency by introducing a modi-

fied source that absorbs the velocity perturbations and relaxes

the requirement for a frequent velocity update (Alkhalifah,

2019). EWI calculates parameter perturbations using a direct

division (deconvolution), and it has been proved effective and

efficient both in acoustic isotropic and VTI media (Alkhalifah

and Song, 2019a,b). In elastic FWI (EFWI), we use multicom-

ponent data and try to extract more information of the subsur-

face. As a result, the nonlinearity of EFWI increases because

of the additional NULL space. To mitigate the cycle-skipping

problem in EFWI, many new approaches were proposed. Guo

and Alkhalifah (2017) and Li et al. (2017) used a nonlinear ob-

jective function to invert for the background velocity and the

reflectivity, simultaneously, without and with considering the

density, respectively. Zhang et al. (2018) proposed a normal-

ized nonzero-lag crosscorrelation objective function to miti-

gate the cycle skipping.

In this abstract, we linearise the EFWI objective function by

dividing the general optimization problem into alternating sub

problems. Besides efficiency and memory saving advantages

which hold for acoustic EWI, it can also reduce the tradeoff be-

tween P- and S-wave velocities. Applications on synthetic data

generated from the modified elastic Overthrust and Marmousi

models show that the proposed approach can yield reasonable

inverted medium parameter models in an efficient matter.

THEORY

In 2D isotropic constant density elastic media, the components

of the wavefield in the frequency domain satisfy the following

relations (Min et al., 2000; Choi et al., 2008):
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where u and v denote the horizontal and vertical displacements.

respectively. ω is the angular frequency, and ρ represents the

density. λ and µ are Lamé constants. As P- and S-wave veloc-

ities vp, vs, Lamé constants and density have the following re-

lations: vp =
√

λ+2µ
ρ ,vs =

√

λ
ρ . Equation 1 can be re-written

as:
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where, fx and fz are the source functions. The frequency do-

main elastic wave equations can be expressed in a compact

form as:

S(x,ω)û(x,ω) = f̂ (xs,ω), (3)



Efficient wavefield inversion for elastic media

where, S(x,ω) is the impedance matrix, which is also referred

to as the modelling operator. û(x,ω) = [u v]T represents the

wavefield vector, and f̂ (x,ω) = [ fx fz]
T represents the source

vector. x and xs represent the Cartesian coordinate spatial di-

mensions and source locations. The wavefield û is calculated

using the elastic wave equation formulated by elastic medium

parameters. The conventional l2 norm objective function is

highly non-linear, which imposes a big challenge in FWI. Be-

side the nonlinearity issue, FWI requires a large amount of

computational cost and storage memory. In order to solve

these problems, we use EWI to perform the multi-parameter

inversion in isotropic elastic media. The objective function of

EWI is given by:

E(ûi, f̂ei) = min
1

2

∑
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‖di −Cûi‖
2
2 +

α
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∥
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∥

∥

2

2
,

(4)

where, i is the source index, and α acts as a weighting factor

on the background wave equation. At the beginning of the in-

version process, we start with a background elastic modelling

operator S0 corresponding to the background medium param-

eters: vp0,vs0. The data vector d = [dx dz]
T is made up of x

and z components, which are extracted from the horizontal and

vertical wavefields using a mapping operator C. f̂e(x,ω) =
[ fex fez]

T represents the modified source vector, which con-

tains the secondary sources (parameter perturbations). As the

wavefield û is an independent parameter with respect to the

new formulation, we calculate the wavefield vector û by solv-

ing the following linear equation:
(

αS0

C

)

ûi =

(

ε f̂ei

di

)

. (5)

Equation 5 is solved by a least squares optimization, and we

obtain reconstructed wavefields of horizontal and vertical dis-

placements, consequently. Same as the wavefield û, the mod-

ified source function f̂e is also a linear parameter with respect

to the EWI objective function in equation 4. So we minimize

E by solving ∇
f̂e

E = 0. The modified source function which

satisfies the wave equation using the background operator is

calculated as:

f̂e = S0û. (6)

We use a finite-difference approximation to represent the elas-

tic wave operator in equation 5 and 6, and the matrix form is

expressed as:
[

ω2Dm +(αDxx +βDzz) (α −β )Dxz

(α −β )Dxz ω2Dm +(βDxx +αDzz)

][

u

v

]

=

[

fx

fz

]

(7)

where α = v2
p and β = v2

s ; Dzz, Dxz, and Dxx denote the finite-

difference operators for spatial derivatives; Dm is the mass ac-

celeration operator. We perturb α and β as δα and δβ , and

define the background squared P- and S-wave velocities as α0

and β0.

α = α0 +δα , β = β0 +δβ ; (8)

With α0 and β0, equation 6 can be expressed as:

[

ω2Dm +(α0Dxx +β0Dzz) (α0 −β0)Dxz

(α0 −β0)Dxz ω2Dm +(βDxx +α0Dzz)
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u
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]
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[

fex
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]

(9)

Subtracting equation 7 from equation 9, we get relations be-

tween squared P- and S-wave velocity perturbations and the

modified source functions, which are:

(δαDxx +δβDzz)u+(δαDxz −δβDxz)v = fx − fex,

(δβDxx +δαDzz)v+(δαDxz −δβDxz)u = fz − fez,

(10)

Consequently, for each grid point, we can calculate δα and δβ
by solving a 2 by 2 matrix given by:

[

Dxxu+Dxzv Dzzu−Dxzv

Dxzu+Dzzv Dxxv−Dxzu

][

δα
δβ

]

=

[

fx − fex

fz − fez

]

(11)

However, this is costly for large models, as we need to solve

a lot of linear inversions granted they correspond to small-size

matrices. For a linear inversion system Ax = b, we often use a

damped least squares optimization using x=
[

AT A+λ I
]−1

AT b.

In this case, λ is a weighting factor, which plays an important

role to stabilize the solution. One inversion strategy requires

to solve a large number of small linear inversion systems of

Ax = b for each grid point independently, but we cannot afford

to find a suitable λ for each solution. To solve this problem,

we combine the inversion into a large single linear tridiagonal

inverse problem expressed as:
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where, a = Dxxu+Dxzv, b = Dzzu−Dxzv, c = Dxzu+Dzzv,

and d = Dxxv−Dxzu. This linear inversion system can be rep-

resented: Ax = b. The size of matrix A is 2N by 2N, where N

is the number of the model grid points. The vector x consists

of P- and S-wave velocity perturbations of the whole model,

and the vector b consists of the difference between the original

source f and the modified source f̂e. Instead of directly using

the damped least squares solution, we use an iterative refine-

ment method to reduce the residual errors (Aghamiry et al.,

2019). This method iteratively updates the right-hand side of

Ax = b. In the first iteration, the solution satisfies:

x1 = arg min
x

‖Ax−b‖2
2 = A−gb, (13)

where A−g =
[

AT A+λ I
]−1

AT represents the generalised in-

verse of matrix A. The right-hand side b1 corresponding to x1

is given by: b1 = Ax1. The residual error is δb1 = b−b1 . In

order to correct the residual δb1, we can easily evaluate the

perturbation δx = x−x1 through

δx1 = arg min
x

‖Aδx−δb1‖
2
2 , (14)

As a result, we can update the model: x2 = x1 +A−gδb1 =
A−gb+A−g(b−Ax1). To summarize, if we repeat this proce-

dure k times, the final solution is evaluated through:

xk = A−gb+
k−1
∑

i=1

A−g(b−Axi) = A−g[b+
k−1
∑

i=1

(b−Axi)], (15)
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EXAMPLES

The key point of EWI is to invert for an accurate, or close

enough, wavefield using the background operator S0(x,ω).
We firstly consider a homogeneous model with true P- and

S-wave velocities being 2.2 km/s and 1.2 km/s, respectively.

We use a longitudinal wave source located in the middle of the

model, and receivers at all boundaries. With the background P-

and S-wave velocities being lower than the actual ones, at 2.0

km/s and 1.0 km/s, and with ε = 10e−15, we use two inner it-

erations between equations 5 and 6 to invert for the wavefields

of horizontal and vertical displacements. We compare the true

wavefields with the background and reconstructed wavefields

of horizontal and vertical displacements for 5 Hz in Figures

1 and 2, respectively. We observe that there are clear mis-

matches between the true and background wavefields in both

components, while the reconstructed wavefields are close to

the true wavefields. Alternatively, these reconstructed wave-

fields can be used to invert for the modified source function f̂e

including the P- and S-wave velocity perturbations.

Figure 1: The true (top a and b), background (bottom a) and re-

constructed (bottom b) wavefields of horizontal displacements.

Figure 2: The true (left a and b), background (right a) and

reconstructed (right b) wavefields of vertical displacements.

We next apply the proposed method on a modified Overthrust

model. The true P- and S-wave velocities are shown in Figure

3. We use 20 sources uniformly distributed on the surface, and

all the grid points on the surface act as receivers. The initial

P- and S-wave velocities are 1D linearly increasing with depth

models as shown in Figure 4.

We perform EWI from 3 Hz to 10 Hz with a sampling interval

of 0.5 Hz in the frequency domain, and in each frequency we

use two inner iterations and 10 outer iterations. The ε we use

here is 10e−15 . The inversion results are shown in Figure 5.

Using the same inversion setup and strategy, we perform FWI

on the same model. It is obvious that EWI recovers true mod-

els reasonably well. While the optimization using FWI appar-

ently falls into a local minimum, the inverted P- and S-wave

Figure 3: The true Overthrust P-wave velocity model (a), and

S-wave velocity model (b).

Figure 4: The initial Overthrust P-wave velocity model (a),

and S-wave velocity model (b).

velocities in the deep part are not well recovered.

Figure 5: The inverted Overthrust P-wave velocity model (a),

and S-wave velocity model (b) using EWI.

We further apply the elastic EWI on a modified elastic Mar-

mousi model, where the true P- and S-wave velocity models

include differences beyond a fixed Poisson’s ratio as the red

arrows point out, which are shown in Figures 7a and 7b. The

initial P- and S-wave velocity models are linearly increasing

with depth, which are shown in Figures 8a and 8b. There

are 76 sources with 125 m spacing interval and 377 receivers

evenly distributed on the surface. We perform EWI and FWI

in this example using the same inversion setup as the previous

one, and the inversion results are shown in Figures 9 and 10.

We observe that EWI can almost recover all the structural fea-
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Figure 6: The inverted Overthrust P-wave velocity model (a),

and S-wave velocity model (b) using FWI.

Figure 7: The true Marmousi P-wave velocity model (a), and

S-wave velocity model (b).

Figure 8: The initial Marmousi P-wave velocity model (a), and

S-wave velocity model (b).

Figure 9: The inverted Marmousi P-wave velocity model (a),

and S-wave velocity model (b) using EWI.

Figure 10: The inverted Marmousi P-wave velocity model (a),

and S-wave velocity model (b) using FWI.

Figure 11: The P-wave velocity profile (a), and S-wave veloc-

ity profile (b) at 5 km.

tures in the P- and S-wave velocity models, while FWI fails to

deliver good inversion results due to the cycle-skipping issue.

This is more obvious in the P- and S-wave velocity profiles at 5

km shown in Figures 11a and 11b. Clearly, the inverted P- ans

S-wave velocities using the proposed method fit the true mod-

els better than the inverted results of the conventional EFWI.

CONCLUSIONS

We apply an efficient wavefield inversion to isotropic elastic

media. By using a modified source function to accommodate

the velocity perturbations, we divide the nonlinear optimiza-

tion problem into several linear sub-problems. After optimiz-

ing the reconstructed wavefields and modified sources, we for-

mulate a linear inversion problem for the P- and S- waves ve-

locity perturbations by an iterative refined method. As a re-

sult, P- and S-wave velocities can be inverted simultaneously

with high accuracy. We have shown the effectiveness of the

approach on synthetic data and we plan to show results from

field data as part of the presentation.
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