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SUMMARY

A recently introduced optimal transport of the matching filter
(OTMF) provided us with a robust misfit function for reducing
cycle skipping in Full-Waveform Inversion (FWI). Unlike the
conventional L2-norm approach, OTMF computes a matching
filter first by deconvolution of the predicted data with the mea-
sured ones and constructs the misfit function by measuring the
Wasserstein distance W2 between the resulting preconditioned
matching filter and the target, i.e., the Dirac delta function.
Compared to the conventional application of the optimal trans-
port (OT) misfit in the data domain directly, OTMF applies the
OT to the resulting matching filter avoiding the modification of
the amplitude or the phase of the original seismic data. Mea-
suring the distance between the resulting matching filter and
a Dirac delta function using Wasserstein metric W2 suggests a
convex misfit function with respect to the time shifted signal.
We propose a misfit function by stereo optimal transport of the
matching filter (SOTMF), which takes the space coherency of
the resulting matching filter into consideration. Compared to
OTMF, SOTMF has an extra regularization term, which con-
trols the variations of the resulting matching filter along the
space (offset) axis, and the regularization term is formulated
by Wasserstein distance between the matching filters of the
nearby traces. Thus, in the framework of OT, SOTMF tries to
focus the resulting matching filter to be a Dirac delta function
in time and enhance its space coherency as well. We use the
Marmousi example to show that SOTMF can reduce the cycle-
skipping, and at the same time its result shows less artifacts
than OTMF. A result using an anisotropic version of SOTMF
waveform inversion on a real dataset also demonstrates the
good performance of the approach.

INTRODUCTION

Full-waveform inversion (Tarantola, 1984) aims to produce high-
resolution subsurface models that are able to produce data that
fits the measured seismic waveforms. It is a nonlinear inver-
sion process, and thus, we iteratively update the subsurface
model to reduce the mismatch between the measured and the
predicted seismic data. Mathematically, we design a misfit
function to characterize such mismatch. Designing a misfit
function that tolerates the expected poor quality and the limited
band nature of field data is highly important. A well-behaved
misfit function also would relax the requirement for a good
initial velocity model and usable low frequency signals in the
data, and thus, resolve the so-called cycle skipping issue.

Over the past decade, the least-square L2 norm is widely used
as a misfit function for its simplicity and high resolution poten-
tial. It, however, suffers from the well known cycle skipping
problem. Currently, new and more advanced misfit functions
were proposed, those include, but not limited to, the matching
filter based misfit function (Van Leeuwen and Mulder, 2008,

2010; Luo and Sava, 2011; Warner and Guasch, 2016; Huang
et al., 2017; Sun and Alkhalifah, 2019), the optimal transport
misfit function (Métivier et al., 2016; Yang et al., 2018; Yang
and Engquist, 2018; Sun and Alkhalifah, 2018a), the instanta-
neous travel-time misfit function (Alkhalifah and Choi, 2014;
Sun and Alkhalifah, 2018c) etc. Unlike the conventional L2-
norm misfit function, those newly proposed methods transform
the search space from local, sample by sample comparison, to
global, trace by trace, comparisons.

A matching filter is computed for each trace by deconvolv-
ing the predicted data from the measured data (Luo and Sava,
2011). Sun and Alkhalifah (2019) proposed the optimal trans-
port of the matching filter (OTMF) misfit function by using
the matching filter in the optimal transport theory resulting in
a more elegant way of introducing optimal transport in FWI.
Current implementations of the optimal transport in FWI is
limited to measuring the distance between the predicted and
measured data directly (Engquist and Froese, 2014; Métivier
et al., 2016; Yang et al., 2018). However, the optimal transport
measurement using Wasserstein distance requires the compared
variables be distributions, i.e., they should be positive and their
integration equals 1. As seismic signals are oscillatory, they do
not meet such a criterion. However, transforming the seismic
signal into a distribution (Qiu et al., 2017) directly would ei-
ther alter its amplitude or phase, which would potentially make
the subsequent inversion unstable and possibly inaccurate. In
order to resolve this issue, instead of measuring the distance
between the predicted and the measured data directly, OTMF
suggests measuring the distance between a matching filter of
the predicted and the measured data and the Dirac delta func-
tion. A precondition would transform the resulting matching
filter which holds the data difference information to a distribu-
tion. Compared with previous approaches for measuring the
distance such as using a penalty method, the new misfit func-
tion is a metric and has a solid mathematical foundation based
on the optimal transport theory. In fact, Sun and Alkhalifah
(2018a) show that adaptive waveform inversion (AWI) is a spe-
cial case of OTMF misfit and the critical normalization term in
AWI can be explained as a requirement for a probability dis-
tribution.

Current application of the OTMF method tries to focus the re-
sulting matching filter to zero lag along the time axis. In this
study, we propose to formulate a misfit function by stereo op-
timal transport of the matching filter (SOTMF). SOTMF in-
cludes a regularization term which controls the variation of the
resulting matching filter along the space (offset) direction. Due
to the lateral heterogeneity, such variations along the space
(offset) direction can be strong, and the introduced regular-
ization term would stabilize the inversion process. Differential
Semblance Optimization (Gao et al., 2014) would suggest a
space derivative of the resulting matching filter to implement
such regularization; here, we use Wasserstein distance based
on optimal transport theory to measure the distance between



the matching filter distributions of nearby traces. The benefits
of using Wasserstein distance for comparing the matching fil-
ter has been demonstrated (Sun and Alkhalifah, 2018a, 2019):
The comparison would be more robust and less sensitive to the
amplitude irregularity, and more importantly it preserves the
convexity properties of the Wasserstein distance with regard to
the time shift.

OPTIMAL TRANSPORT OF THE MATCHING FILTER
(OTMF)

Here, we briefly review the OTMF approach. Readers can refer
to Sun and Alkhalifah (2018a) and Sun and Alkhalifah (2019)
for detailed information such as the adjoint source computa-
tion and the comparison with adaptive waveform inversion.

Conventional optimal transport approaches measure the Wasser-
stein distance between the predicted data p(t) and the mea-
sured data d(t) directly. The OTMF approach measures Wasser-
stein distance between a matching filter extracted from decon-
volving the measured from the predicted data and the Dirac
delta function instead. Thus, at first, given the measured data
d(t) and the predicted data p(t), we compute a matching filter
w(t):

d(t)⇤w(t) = p(t), (1)

where ⇤ denotes the convolution operation. In order to full-fill
the requirement of the optimal transport theory, we precondi-
tion and modify w(t) to be a distribution. We suggest to square
it and normalize it as follows:

w0(t) =
w2(t)R
w2(t)dt

=
w2

||w||22
. (2)

When the model parameters are accurate, the resulting match-
ing filter reduces to a ”Dirac delta function”, this means the
”Dirac delta function” d (t) is the target. Based on the theory
of optimal transport, we use Wasserstein metric W2 to measure
the distance between the resulting matching filter and the Dirac
delta function:

JOTMF =W 2
2 (w

0(t),d (t)). (3)

As we compute the Wasserstein distance per trace, it is a 1D
optimal transport problem and an explicit formula exists (Yang
and Engquist, 2018):

JOTMF(w0,d (t)) =
R
|t �D�1(W 0(t))|2w2(t)dt

||w||22
. (4)

Here, we use D and W 0(t) to denote the commutative distribu-
tion function for Dirac delta function d (t) and the normalized
matching filter w0(t) respectively. D�1 is the inverse function
for the commutative distribution function D. Because of the
singularity involved in the Dirac delta function, in practice, we
use a Gaussian function with a small standard deviation to ap-
proximate the Dirac delta function.

STEREO OPTIMAL TRANSPORT OF THE MATCHING
FILTER (SOTMF)

OTMF tries to focus the resulting matching filter in time di-
rection only. An improvement can be made by taking the
space coherency of the resulting matching filter into considera-
tion. For example, Differential Semblance Optimization (Mul-
der and ten Kroode, 2002; Gao et al., 2014) would suggest en-
hancing the semblance of the resulting matching filter along
space (offset) direction and propose the following function for
regularization:

RDSO =
X

xi


∂w(t,x)

∂x

�2

x=xi

, (5)

where, xi denotes the trace at different space locations (off-
set). Based on our framework of the optimal transport match-
ing filter, we can design a regularization term by measuring the
Wasserstein distance of nearby matching filters:

ROTMF =
X

xi

W 2
2
�
w0(t,xi),w0(t,xi+1)

�
. (6)

The new form of comparison between two nearby matching
filters using an optimal transport measure can provide better
performance than the conventional DSO formula of equation
5: Due to the Wasserstein distance special features in prob-
ability distribution comparisons, it is less sensitive to change
in the amplitude and preserves convexity with regard to time
shift.

Thus, the final misfit function for SOTMF is

JSOTMF =
X

xi

h
W 2

2 (w
0(t,xi),d (t))+lW 2

2
�
w0(t,xi),w0(t,xi+1)

�i
,

(7)
where l is a weighting term, which balances the focusing in
the time direction and the coherence in the space direction.
As the label ”stereo” included in its name, SOTMF leads to a
more robust inversion, which focuses the resulting matching
filters in the time direction while maintaining their coherency
in space (offset) direction as well.

EXAMPLES

In this section, we apply our approach to invert for the modi-
fied Marmousi model. The true velocity vtrue shown in Figure
1a extends 2 km in depth and 8 km, laterally. The initial ve-
locity is shown in Figure 1b. The dataset is modeled using 80
shots with a source interval 100 m and 400 receivers with an
interval of 20 m. The source wavelet is a Ricker wavelet with a
10 Hz peak frequency. We mute the data below 3 Hz to verify
that our proposed method is capable of overcoming the cycle
skipping for data free of low frequency. In the inversion, we
do not perform frequency continuation. Instead, we band-pass
the dataset with highest frequency 10 Hz and perform the in-
version directly. We iterate overs 200 iterations, and the final
inverted result for the L2 norm, OTMF and SOTMF misfits are
shown in Figures 1c to 1e respectively. From the results, the
L2-norm misfit fails in many areas due to cycle skipping espe-
cially at depth while SOTMF can mitigate the cycle-skipping



and outperform the OTMF misfit with less artifacts (the areas
denoted by the black arrows).

The second example is a marine real data set from offshore
Australia (Sun and Alkhalifah, 2018b). The offset range is
from 160 to 8200 m. The initial vertical velocity is converted
from RMS velocity given in Figure 2a, and we set the anisotropic
parameter e = 0 shown in Figure 2b for the initial model. We
perform the VTI-FWI inversion using the proposed SOTMF
misfit function with a low-pass filter applied to the data from
4 Hz to 9 Hz every 1 Hz sequentially and refine the obtained
result using the L2-norm misfit function at the end for higher
resolution. The final inverted model for the vertical velocity
and the epsilon is shown in Figures 2c and 2d, respectively.
We can see that the inverted velocity model shows consistent
structures. In the right panels of Figures 3a and 3b, we show
one selected common shot gather for the initial and the inverted
models. We compare them with the recorded shot gather at the
same location in the right panel. Clearly, the inverted model
reproduces the data that better matches the measured data, es-
pecially at the larger offsets where cycle skipping usually hap-
pens, and it is evident for the initial model. Considering the
initial velocity model is obtained from a crude RMS velocity,
we attribute the good convergence to the proposed misfit func-
tion’s ability to handle cycle skipped data. In Figures 3c and
3d, we compare the RTM image for the initial model and the
inverted model. It is clear that after VTI-FWI updating of the
model, the image shown in Figure 3d becomes better focused
(note the area denoted by the blue arrows). The improved fo-
cusing of a V-shaped fault denoted by the yellow dotted line
further demonstrates the high accuracy of the inverted model.

CONCLUSION

We proposed a misfit function, which utilizes a matching filter
between the measured and predicted data, and uses the optimal
transport concept to build a model that transforms the match-
ing filter to a form that makes the predicted data fit the ob-
served one, and that is a Dirac Delta function. We suggest to
apply a space regularization term, which measures the Wasser-
stein distance between the nearby matching filters. A Mar-
mousi synthetic and an offshore real data examples verified
the effectiveness and robustness of the proposed stereo opti-
mal transport of the matching filter approach.
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Figure 1: a) The true Marmousi velocity; b) the initial velocity;
the inverted model based on c) the L2-norm misfit function; (d)
the OTMF misfit; e) the SOTMF misfit.



(a)

(b)

(c)

(d)

Figure 2: The initial model for a) the vertical velocity; b) the
epsilon; the inverted model for c) the vertical velocity; d) the
epsilon.
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Figure 3: The record comparison of the measured data (left
panel) and the modeled data by a) the initial model ( right panel
); b) the inverted model (right panel); the RTM image for c) the
initial model; d) the inverted model.


