
ML-descent: an optimization algorithm for FWI using machine learning
Bingbing Sun and Tariq Alkhalifah, King Abdullah University of Science and Technology

SUMMARY

Full-Waveform Inversion is a nonlinear inversion problem, and
a typical optimization algorithm such as nonlinear conjugate-
gradient or LBFGS would iteratively update the model along
gradient-descent direction of the misfit function or a slight
modification of it. Rather than using a hand-designed opti-
mization algorithm, we trained a machine to learn an optimiza-
tion algorithm which we refer to as ”ML-descent” and applied
it in FWI. Using recurrent neural network (RNN), we use the
gradient of the misfit function as input for training and the hid-
den states in the RNN uses the history information of the gra-
dient similar to an BFGS algorithm. However, unlike the fixed
BFGS algorithm, the ML version evolves as the gradient di-
rects it to evolve.The loss function for training is formulated
by summarization of the FWI misfit function by the L2-norm
of the data residual. Any well-defined nonlinear inverse prob-
lem can be locally approximated by a linear convex problem,
and thus, in order to accelerate the training speed, we train
the neural network using the solution of randomly generated
quadratic functions instead of the time-consuming FWI gra-
dient. We use the Marmousi example to demonstrate that the
ML-descent method outperform the steepest descent method,
and the energy in the deeper part of the model can be com-
pensable well by the ML-descent when the pseudo-inverse of
the Hessian is not incorporated in the gradient of FWI.

INTRODUCTION

Full-Waveform inversion is a high-resolution subsurface imag-
ing method. It utilizes the full information of the presetck seis-
mic dataset, i.e., reflections, refractions, diving waves, P- and
S-waves, surface waves, amplitudes and phases. A successful
implementation of FWI can invert for the subsurface proper-
ties such as P- and S-wave velocities, density, attenuation, and
anisotropy parameters with high resolution in the limit of the
Rayleigh criterion.

Mathematically, FWI can be considered as a nonlinear inverse
problem. Although global optimization schemes such as the
Monte Carlo method (Jin and Madariaga, 1994; Sambridge
and Mosegaard, 2002), genetic algorithms (Sen and Stoffa,
1992; Jin and Madariaga, 1993), simulating annealing (Kirk-
patrick et al., 1983; Datta and Sen, 2016) have shown potential
in solving FWI problem, those global optimization methodolo-
gies typically require an evaluation of the misfit function for
tens of thousands of times. For real applications, especially
in 3D, where we have hundreds of millions of unknown pa-
rameters, these strategies become impractical considering the
current computational capabilities. Thus, current FWI meth-
ods rely on local optimization schemes in which we mainly
update the model along the descent directions.

There are various iterative methods for solving the nonlinear

optimization problem of FWI including the steepest descent
method, nonlinear conjugate-gradient method, and Newton’s
methods, like the Gauss-Newton method , and various quasi-
Newton methods (Ma and Dave, 2012). Compared to the steep-
est descent and nonlinear conjugate-gradient method, the New-
ton’s methods generally converge faster in fewer iterations.
However, for a model size O(N), the full Newton’s methods
require evaluating the inverse of the Hessian matrix of size in
O(N2), which is computationally prohibitive especially for 3D
problems. Thus, various methodologies have been proposed to
approximate the Hessian matrix. For example, the Gaussian-
Newton method ignores second-order terms that account for
nonlinearity in the misfit function. Quasi-Newton methods do
not compute the Hessian matrix, but instead iteratively update
a Hessian approximation. Different strategies for such Hessian
updating can be utilized, such as the BroydenFletcherGold-
farbShanno (BFGS) algorithm (Fletcher, 1987) and the Davi-
donFletcherPowell (DFP) algorithm (Davidon, 1991). How-
ever, although the BFGS method reduces the computation time
required to approximate a Hessian matrix, it does not decrease
the amount of memory required to store the approximated Hes-
sian.

The limitted-memory BFGS (LBFGS) method can be consid-
ered as a practical implementation of the quasi-Newton method.
It does not explicitly compute or store any type of Hessian ma-
trix. Instead, LBFGS only stores information, such as model
changes and gradient changes for a limited number M of pre-
vious iterations. LBFGS then uses the stored information to
implicitly form an inverse of the approximated Hessian and
obtains the updating direction of the next iteration.

All the aforementioned hand-crafted optimization algorithms
are applicable to general inverse problems, and is not specific
to FWI. In this abstract, we propose to design an optimiza-
tion algorithm for FWI based on Machine Learning (ML). Spe-
cially, we take the gradient of the misfit function at the current
step as input and utilize the recurrent neural network (RNN)
for training. RNN has wide applications in machine learning
such as natural language understanding, language generation,
video processing and may other tasks. Recently, Andrychow-
icz et al. (2016) proposed to use RNN for designing optimiza-
tion algorithms. Their learned algorithms outperform generic,
hard-designed alternatives on the tasks for which they are trained,
and also generalize well to new tasks with a similar structure.
Thus, the majority of the work presented in this abstract is in-
spired by their work. The difference is that they applied the
learned algorithms to optimize the machine learning problem
such as for classification, while we applied the learned algo-
rithm to a specific inverse problem in geoscience, i.e, the full-
waveform inversion here. Our main purpose is to figure out
whether the machine can learn how to better update the model
for an optimization problem, and thus help in accelerating the
convergence of FWI. We test the approach on the Mamrousi
model, and share the results.

MACHINE LEARNING OF AN OPTIMIZATION ALGO-
RITHM

A first-order optimization algorithm such as nonlinear conjugate-
gradient or LBFGS method, can be summarized as

xt = xt−1 + γdt−1(g,d), (1)

where γ is the learning rate (step length), xt is the variable we
want to invert for in the original inversion problem. The vector
dt−1 is the updating direction, which is a function of the gradi-
ent g and the updating direction d at the previous and current
steps. The difference between the different optimization al-
gorithms, e.g., nonlinear conjugate-gradient or LBFGS is how
to compute the updating direction based on the history of the
updating information.

Now, rather than using already existing algorithms, we try to
find a function using neural network, which can map the cur-
rent gradient g into the updating direction d. In order to utilize
the history of the updating information, i.e., the previous gra-
dients g and updating directions d (so the resulting optimiza-
tion algorithm becomes similar to the LBFGS method), we use
a special network called recurrent neural network (RNN). As
shown in Figure 1, its input is the gradient gt and the hidden
state ht at current time step, and its output would be the updat-
ing direction d and hidden state ht+1 for next time iteration:

(dt ,ht+1) = RNN(gt ,ht ;φ), (2)

where φ is the parameters of RNN hat we need to evaluate and
optimize. From Figure 1, we can see that RNN is used recur-
sively, note that we have only one neural network of RNN and
in each time step, they share the same parameter φ for training,
i.e., we only have one set of parameter φ during the training.
We unroll along the time direction for demonstration purposes.
The hidden state variable ht , which appears in both of the input
and output of RNN, keeps track of the history of the updating
information, and thus allows the resulting algorithm to use the
history of the updating like in the LBFGS method and in fact
many recent learning procedures in ML, such as adaptive mo-
ment estimation, also utilizes the history information by taking
the momentum into consideration.

The loss function for training would be a weighted summation
of the mean square errors of the residuals at all time steps:

L =
∑

t
wt f (xt(φ)), (3)

where f is the misfit function for the original inverse problem.
Since the updating direction is determined by the output of
RNN, so f is a function of the parameter φ of the RNN. Note
here, we have a weighted summation of the misfit function
over all time steps (iterations). We can however, only select
the final step of the misfit value as the loss function, but this
would make the training to be difficult, because when back-
propagating the residual, the gradient value reduces consider-
ably when it propagates back to earlier time steps. Thus, in the
examples shown in this abstract, we select the weighting wt to
be 1, i.e., we give the same weight for the misfit value in each
step.

THE COORDINATE-WISE IMPLEMENTATION

For a typical 3D FWI application, the parameters of the model
can be in the scale of millions. Optimizing at this scale with a
fully connected RNN is not feasible as it would require huge
hidden states and enormous number of parameters (note the
parameters of the RNN would be in the order of O(N2), where
N is the size of the input). To resolve this difficulty, we use a
modified RNN, which operates coordinate-wise on the param-
eters of the objective function as shown in Figure 2. Differ-
ent coordinates share the same RNN parameters for updating
while unique behavior on each coordinate is achieved by using
separate hidden stable variables. Thus, this coordinate-wise
network architecture can reduce the memory computation bur-
den significantly without loss of the efficiency and accuracy of
the resulting optimization algorithm.

TRAINING OF THE RNN

We can run FWI on different velocity models for training the
parameters for RNN. However, a typical time-domain FWI re-
quires solving a partial differential equation to construct the
gradient and this tends to be computationally expensive. Thus,
all the inversion problems are often approximated locally by
a linear problem, we design various such linear problems for
the training. One simple option, we define a quadratic misfit
function f as:

f = ||Wx−b||22. (4)

We can randomly choose the matrix W and vector b to for-
mulate a particular inverse problem. Such training is much
more efficient as it avoids wave-equation modeling and alter-
natively here we only need one matrix multiplication and one
vector subtraction for the modeling. For the examples shown
here, we create 20,000 such linear inverse problem for train-
ing. The weighting matrix is chosen to be 10 by 10 and vec-
tor b is accordingly a 10-dimensional vector. Their elements
are drawn randomly from a Gaussian distribution. Each func-
tion was optimized for 100 steps and every 20 steps we eval-
uated the summation of the misfit as defined in Equation 3
and back-propagated the residual for updating the parameters
of the RNN. In Figure 3, we show the performance of dif-
ferent optimization algorithms on the randomly sampled 10-
dimensional quadratic functions. We can see that the learned
optimization algorithms by RNN show faster convergence than
other state of the art algorithms such as ADAM (Kingma and
Ba, 2014) and RMSprop(Ruder, 2016). This simple example
clearly demonstrates the advantage of the learned optimization
algorithms over hand-crafted ones. In the next section, we will
apply this learned algorithm to the inversion of the modified
Marmousi model.

EXAMPLES

In this section, we apply our learned optimization algorithm
i.e., the ML-descent algorithm to invert for a modified Mar-
mousi model. The true velocity vtrue shown in Figure 4a ex-
tends 2 km in depth and 8 km, laterally. The initial velocity is

shown in Figure 4b. The dataset is modeled using 100 shots
with a source interval of 80 m and 200 receivers with an inter-
val of 40 m. The source wavelet is a Ricker wavelet with a 6
Hz peak frequency. We perform a full-band dataset inversion
and iterate for 20 iterations. In order to evaluate the perfor-
mance of the optimization algorithm, we do not include the
second order information e.g., the pseudo Hessian, in the gra-
dient computation. Figure 4c to 4f shows the inverted model
using the conventional steepest descent, Adam method, RM-
Sprop method and the learned ML-descent methods, respec-
tively. From the result, it is clear that without the pseudo Hes-
sian to compensate for the illumination and geometric spread-
ing effects, the steepest descent method can hardly recover the
deeper part of the model. Adam method and RMSprop method
result in improved result while the ML-descent method which
is learned by a machine can successfully invert for the model
both in the shallow and deeper parts and provides with the best
result. The result of the ML descent includes some noise ,
which is probably due to the coordinstewise implementation
of the RNN, which ignores the neighborhood information to
make the resulting update smooth. This suggests that a mod-
ification of the current neural network architecture to change
from a coordinate-wise implementation to patch-wise imple-
mentation, which can incorporate the neighborhood informa-
tion, could be useful. At last, in Figure 5, we show the curves
of the normalized misfit value over iterations, the good perfor-
mance of the proposed ML-descent method is further demon-
strated by its fast convergence.

CONCLUSION

We developped an optimization algorithm learned by a ma-
chine. RNN is used to learn an optimization algorithm, which
can use the history of the update, like LBFGS. A coordinate-
wise implementation of the RNN is evaluated for efficient train-
ing of the network. Both the examples of a quadratic misfit
function and the Marmousi model demonstrate the good per-
formance of the proposed method. Improvements of current
work can be made by considering a patch-wise implementa-
tion of the RNN or training the network for inversion of real
FWI problems, both of which will be shared in the presentation
of the work.

ACKNOWLEDGMENTS

We thank KAUST for the funding of this research and the
members of SWAG group for useful discussions.

Figure 1: Demonstration of the RNN network: Input is the gra-
dient g and output is the updating direction d, the hidden state
h is used to keep track of and utilize the history information,
i.e., (dt ,ht+1) = RNN(gt ,ht ;φ) where φ is the parameters for
RNN which will be updated during training.

Figure 2: One step of coordinatewise RNN updating. All
RNNs have the shared parameters φ , but separate hidden
states.

Figure 3: Performance of different optimization algorithms
on randomly sampled 10-dimensional quadratic functions.The
learned optimization algorithm by RNN shows faster conver-
gence than other hand-crafted algorithms.

(a) (b)

(c) (d)

(e) (f)

Figure 4: Marmousi velocity model for a) the true velocity; b) the initial velocity; the inverted velocity by c) the steepest descent
method; d) Adam method; e) RMSprop method; f) the ML-descent method.

5 10 15 20

Iteration

10
-1

10
0

N
o

rm
a

liz
e

d
 m

is
fi
t

Steepest descent
Adam
RMSprop
ML descent

Figure 5: The curves of the normalized misfit over iterations: the learned ML-descent optimization algorithm shows faster con-
vergence than the hand-drafted steepest descent algorithm and Adam method. Compared to RMSprop method, the ML-descent
converges to a model with smaller data residual value.

