
Style transfer for generation of realistically textured subsurface models
Oleg Ovcharenko∗, Vladimir Kazei, Daniel Peter and Tariq Alkhalifah

SUMMARY

Training datasets consisting of numerous pairs of subsurface
models and target variables are essential for building machine
learning solutions for geophysical applications. We apply an
iterative style transfer approach from image processing to pro-
duce realistically textured subsurface models based on syn-
thetic prior models. The key idea of style transfer is that con-
tent and texture representations within a convolutional neural
network are, to some extent, separable. Thus, a style from one
image can be transferred to match the content from another
image. We demonstrate examples where realistically random
models are stylized to mimic texture patterns from Marmousi
II and a section from the BP 2004 benchmark velocity models.

INTRODUCTION

Deep learning models require thousands of samples to infer
dependencies in the data. With the increased interest in deep
learning in the field of geophysics, numerous data samples
become essential for training neural network models. Espe-
cially in exploration surveys, significant amounts of seismic
data have been acquired over past decades. This allowed for
successful data-domain machine learning applications, such as
first break picking (Yuan et al., 2018), data interpolation (Jia
and Ma, 2017) and denoising (Jin et al., 2018) among oth-
ers. Image-domain geophysical machine learning applications,
however, require numerous sets of realistic subsurface models
(Kazei et al., 2019) for training.

The task of velocity model building, e.g., from seismic data
(Wang et al., 2018; Mosser et al., 2018), low-frequency data
extrapolation from shot gathers (Ovcharenko et al., 2019) and
salt body delineation (Shi et al., 2018), require subsurface mod-
els with specific properties. Neural networks used for these ap-
plications are usually trained in a supervised manner on hun-
dreds of data-model pairs. Getting realistic velocity profiles
from field data is a costly and non-trivial problem, and usu-
ally affordable for quality control and testing purposes only.
A common workaround is the generation of velocity models
which can be used to produce synthetic seismic data or any
other derivatives.

There are numerous empirical approaches for the generation
of custom subsurface models. Random model generators are
usually tailored for a specific task and might produce generic
types of random subsurface models, e.g., layered or salt in-
duced models. However, a simple generator usually fails to
deliver a model of high perceptual quality. Meaning that the
resulting subsurface models do not look realistic from an ex-
pert point of view (i.e. layering, faults, trends, and so on).
For this reason, we investigate here a style transfer approach,
which recently has gained attention in the field of image pro-
cessing.

Perceptual realism of synthetically generated images is one
of the desirable outcomes in the computer vision community.
Modern image processing techniques are often based on a class
of neural networks called Convolutional Neural Network (CNN).
A generic feed-forward CNN consists of a convolutional en-
coder and a target-oriented part which, e.g., is made of a num-
ber of fully-connected layers. The encoder maps an image into
a descriptive latent space by hierarchically decomposing the
image into a set of features learned by a bank of filters in each
layer of the network. In shallow layers of the convolutional
encoder, filters learn low-level features such as simple color
contrasts, however filters in deeper layers retrieve more com-
plex patterns. A beneficial feature of CNNs is that the same
pre-trained encoder might be used in different applications.
Once trained, the same set of filters might be used to search
for matching patterns in a different dataset.

Recently, Gatys et al. (2015) demonstrated that representations
of content and texture (or style) in a CNN are separable. Mean-
ing that any image can be decomposed to some extent into its
content and texture representations, which can then be mixed
to produce a new output with a persistent high perceptual qual-
ity. The content representation aims to describe objects and
structures which are present in the image, whereas the style
representation derives and reproduces textures and color pat-
terns in the image. In a similar way, popular public services
can stylize any photographs by mimicking famous artworks.
For our purposes, we amend this proposed style transfer con-
cept from image processing to enhance the geological realism
of generated subsurface models.

METHOD

According to Gatys et al. (2015), style transfer is an iterative
optimization task, which aims to generate an image x that min-
imizes the discrepancy between the content representation of
one image a and the texture representation of another image b.
The key idea of this approach is that representations of content
and textures in the CNN are separable and convolutional layers
of a pre-trained CNN might be used as descriptors of content
and textures in the input image. Each filter in a convolutional
layer of the network produces a feature map which maximizes
the areas where the filter matches a pattern in the image (Yosin-
ski et al., 2015). Thereby, a set of filters parametrizes the orig-
inal image and allows similarity between images to be mea-
sured as a distance between corresponding feature maps. This
difference might be formulated as a loss function, which is a
sum of respective content and texture losses.

In the following, we provide a brief summary of the main ideas
of Gatys et al. (2015) and Ulyanov et al. (2016), who extended
the original approach by designing a neural network for fast
style transfer.



Content loss
The content loss describes the spatial arrangement of objects
in the image. Content loss is proportional to the root-mean-
square distance between feature activation maps in selected
layers of the CNN. Convolution of the i-th filter in the layer l
with the input image results in a feature map F l

i (x). By match-
ing activations from selected convolutional layers LC, the op-
timization converges to an image x, which mimics the content
from the prior image a. Content loss JC is thus defined as

JC(a,x) =
∑
l∈LC

Nl∑
i=1

||F l
i (a)−F l

i (x)||22 , (1)

where Nl is number of filters in the l-th layer of the network.
Assuming that the network is convolutional, feature maps F l

i (x)
are matrices such as the ones shown in Figure 1, where spatial
indexes in notation are omited for brevity.

Texture loss
The texture loss accounts for joint activations in feature maps
in selected layers of the CNN. In other words, similarly tex-
tured images will produce a similar cumulative response for
the same set of filters. The feature correlations are quantified
by a Gram matrix G defined as

Gl
i j(x) = 〈F l

i (x),F
l
j (x)〉 . (2)

which consists of inner products between the vectorized fea-
ture maps F l

i and F l
j in the layer l. The Gram matrix quanti-

fies correlated activations of filters and has Nl ×Nl members,
where Nl stands for the number of filters in layer l. Texture
loss JT can be written as

JT (b,x) =
∑
l∈LT

||Gl(b)−Gl(x)||22, (3)

which, unlike content loss JC, is insensitive to spatial locations
of textures within the image. Each inner product of two feature
maps in the layer results in a scalar value which does not carry
information about spatial context in the image, but is focused
on the kind of features.

Total loss
The iterative search procedure for the image x, combining con-
tent and textures from images a and b respectively, starts from
a white noise distribution of the same size as the target image.
The optimization algorithm attempts to jointly minimize the
weighted content and texture loss terms,

J(a,b,x) = α JC(a,x)+β JT (b,x) . (4)

The parameter α controls the contribution of content represen-
tation into the resulting image, whereas β similarly contributes
to the style representation. Only one of these two parameters
is actually needed as the total magnitude of the objective func-
tion matters. However, we keep the redundant notation with
both α and β as it leads to a more clear formulation of the loss
function. The larger the ratio α/β becomes, the more sen-
sitive the algorithm behaves to shapes found in feature maps
from the layer l of the pre-trained CNN. A total variation reg-
ularization term (Mahendran and Vedaldi, 2015) added to the

total loss makes the resulting image more consistent by impos-
ing penalty on variation between neighboring pixels. Detailed
explanation of derivatives for content and texture loss terms
with respect to the target image x and activations in layers of
the network F l

i can be found in Gatys et al. (2015).

In the following, we will investigate this style transfer approach
and effects of different α/β ratios for exploration model se-
tups.

EXAMPLES

To get feature maps for the input image, we follow the origi-
nal work of Gatys et al. (2015) and use the pre-trained VGG16
network (Simonyan and Zisserman, 2014). The VGG16 is a
convolutional neural network created to challenge human per-
formance on general object classification tasks.

The architecture of the encoder part of the network is made
of 5 structural blocks, each consisting of two or three convo-
lutional layers and one max pooling layer for dimensionality
reduction. In total, the encoder architecture includes 13 con-
volutional and 4 max pooling layers. We extract meaningful
content representations from layer conv4 2 ∈ LC and compute
Gram matrices for texture representations for feature maps from
layers conv{1-5} 1 ∈ LT . Notation conv4 2 refers to the
second convolutional layer in the fourth block of the network
architecture. Figure 1 shows examples of feature maps from
layer conv4 2 obtained by convolution of the Marmousi II
benchmark model (Martin et al., 2006) with respective filters.

Figure 1: Feature maps for two corresponding filters (a) and
(b) in the conv4 2 layer of the VGG16 network, applied to the
Marmousi II benchmark velocity model.

As an optimization algorithm, we employ the L-BFGS scheme
to minimize the total loss function J. Additionally, we use a
mild total-variation regularization to enforce smoothness in the
resulting images. For all examples provided in this section, we
run 50 iterations of the L-BFGS algorithm.

Workflow explained
We demonstrate the iterative style transfer workflow by textur-
izing a content template image a to exhibit features extracted
from a texture sample image b, which is a schematic repre-
sentation of geology in the Meander belt outcrop Deschamps
et al. (2012) . The content image, Figure 2(a), has dimensions



of 175×600 pixels and is assembled of two concatenated lin-
ear profiles with sparse stepping, inverted one with respect to
another. The sample of geological texture, Figure 2(b), mimics
only a realistic spatial distribution of fine layers. It has been
resized to have the same size as the content image.

Figure 2: Style transfer example for content model (a) and
texture sample (b) from the Meander belt outcrop. Results are
shown for content to texture ratio, α/β , of (c) 0.25 and (d) 2.0.

First, the content image a, the texture image b and the white
noise image x independently proceed through the layers of the
pre-trained VGG16 network, where they are decomposed into
a number of feature representations. Then, the content loss is
computed between a and x by substituting 512 feature maps of
size 15×54 from layer conv4 2 into eq. 1. Feature maps from
a different set of convolutional layers, LT , are then used to
build Gram matrices and to compute the texture loss between
b and x according to eq. 3. The last step is to compute the total
loss J according to eq. 4, and its gradient with respect to all
pixels of the image x.

The resulting textured models for two different α/β ratios are
shown in Figure 2(c-d). Texture contributions in Figure 2(c)
dominate over the content, which leads to a perceptually uni-
form texturing of the image where horizontal layers from the
original image are barely distinguishable. The layered struc-
ture is showing up when the contribution of the content loss
increases, Figure 2(d). Despite completely artificial structure
of the content image, the optimization algorithm attempts to
create an output which mimics geological features.

Random subsurface models
In this section, we show examples of style transfer on a number
of synthetic subsurface models and use the Marmousi II and a
section from the BP 2004 benchmark model as donors of geo-
logical features. The Marmousi model is dominated by layered
structures, whereas the section from the BP 2004 model has a
smooth background and a contrasting salt body in the middle.

We create a set of prior content images by using custom ran-
dom model generators, which were applied to create training
datasets for shot-to-shot low-frequency data extrapolation by a
deep CNN (Ovcharenko et al., 2019). The left column in Fig-
ure 3 lists a number of models which were created using: (1) a
random Gaussian field, (2) an assembly of vertical 1D velocity
profiles, (3) manipulations with wavelets (Kazei et al., 2019),
(4-5) a linear gradient and with an embedded reflective body,
respectively, (6) the BP 2004 model, (7) white noise and (8) a
homogeneous background.

In general, we observe a few dominant textures in each of style
images, which dominate the generated images. For the Mar-
mousi, these are parallel layers, and for the section from the BP
2004 model, these are smooth gradients interrupted by sharp
contrast inclusions. Being initiated from the white noise, the
algorithm attempts to merge the content prior with the texture
sample preserving, however, perceptual consistency in the re-
sulting image.

White noise as content prior leads to a scattered image, chal-
lenging the optimization algorithm. The BP 2004 model used
both as content and style priors, as expected, converges to it-
self. The gradient and homogeneous content priors produced
the geologically most realistic subsurface models.

DISCUSSION

The described iterative optimization approach for style trans-
fer takes tenths of seconds on a modern GPU to complete the
texturing for a single image. Moreover, computational costs
linearly grow with the size of the input image. Ulyanov et al.
(2016) and Johnson et al. (2016) proposed neural network ar-
chitectures which might be trained to complete a specific tex-
ture transfer for an image of arbitrary size in a fraction of a sec-
ond. Such a fast formulation enables on-the-fly generation of
random subsurface models with shared texture patterns. How-
ever, seismic applications rarely require real-time generation
of training datasets. Thus, in this work we employed a simple
iterative implementation, with weights adjustable by the user.

Another note is about dimensionality of the input and target
data. Widely used descriptor CNNs (Canziani et al., 2016) are
usually trained for real-world image classification. Meaning
that the input data to the CNN is an image with three color
channels. This might be a built-in benefit for transferring tex-
ture patterns in elastic media parametrized by Vp,Vs and ρ .
However, for acoustic media, parametrized by the Vp only, the
generated three color channel image has to be properly mapped
into a monochromatic representation.



Figure 3: Synthetic velocity models textured to mimic features from (A) Marmousi II and (B) a central section from the BP 2004
benchmark models for even contribution of content and texture loss terms, α/β = 1. Synthetic content models (1-8) were created
using (1) a random Gaussian field, (2) random vertical profiles, (3) wavelet permutations, (4-5) linear gradient and contrast body,
(6) BP 2004 model, (7) white noise and (8) a homogeneous model.

CONCLUSIONS

We demonstrated a style transfer approach from image pro-
cessing to enhance the perceptual realism of generated subsur-
face velocity models. In our application, the content prior of a
subsurface model can be stylized to exhibit complex textures
from a sample geology prior. The produced mixed models do
not alter significantly from their content priors, however, they
are mimicking features from the respective texture priors. We
plan to incorporate this style transfer approach into generating
the training datasets of realistic subsurface models to improve
machine learning solutions for seismic inverse problems.
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